Home

Principles of Turbomachines

Principles of Turbomachines

 

 

Principles of Turbomachines

Basic Principles of Turbomachines`

 

A fluid machine is a device which converts the energy stored by a fluid into mechanical energy or vice versa. The energy stored by a fluid mass appears in the form of potential, kinetic and intermolecular energy. The mechanical energy, on the other hand, is usually transmitted by a rotating shaft. Machines using liquid (mainly water, for almost all practical purposes) are termed as hydraulic machines. In this chapter we shall discuss, in general, the basic fluid mechanical principle governing the energy transfer in a fluid machine and also a brief description of different kinds of hydraulic machines along with their performances. Discussion on machines using air or other gases is beyond the scope of the chapter.

1.2 CLASSIFICAITONS OF FLUID MACHINES

The fluid machines may be classified under different categories as follows:

1.2. 1 Classification Based on Direction of Energy Conversion.

The device in which the kinetic, potential or intermolecular energy held by the fluid is converted in the form of mechanical energy of a rotating member is known as a turbine . The machines, on the other hand, where the mechanical energy from moving parts is transferred to a fluid to increase its stored energy by increasing either its pressure or velocity are known as pumps, compressors, fans or blowers.

1.2.2 Classification Based on Principle of Operation

The machines whose functioning depend essentially on the change of volume of a certain amount of fluid within the machine are known as positive displacement machines. The word positive displacement comes from the fact that there is a physical displacement of the boundary of a certain fluid mass as a closed system. This principle is utilized in practice by the reciprocating motion of a piston within, a cylinder while entrapping a certain amount of fluid in it. Therefore, the word reciprocating is commonly used with the name of the machines of this kind. The machine producing mechanical energy is known as reciprocating engine while the machine developing energy of the fluid from the mechanical energy is known as reciprocating pump or reciprocating compressor.

The machines, functioning of which depend basically on the principle of fluid dynamics, are known as rotodynamic machines. They are distinguished from positive displacement machines in requiring relative motion between the fluid and the moving part of the machine. The rotating element of the machine usually consisting of a number of vanes or blades, is known as rotor or impeller while the fixed part is known as stator,

For turbines, the work is done by the fluid on the rotor, while, in case of pump, compressor, fan or blower, the work is done by the rotor on the fluid element. Depending upon the main direction of fluid path in the rotor, the machine is termed as radial flow or axial flow machine. In radial flow machine, the main direction of flow in the rotor is radial while in axial flow machine, it is axial. For radial flow turbines, the flow is towards the centre of the rotor, while, for pumps and compressors, the flow is away from the centre. Therefore, radial flow turbines are sometimes referred to as radially inward flow machines and radial flow pumps as radially outward flow machines. Examples of such machines are the Francis turbines and the centrifugal pumps or compressors. The examples of axial flow machines are Kaplan turbines and axial flow compressors. If the flow is party radial and partly axial, the term mixed-flow machine is used.

1.2.3 Classification Based on Fluid Used

The fluid machines use either liquid or gas as the working fluid depending upon the purpose. The machine transferring mechanical energy of rotor to the energy of fluid is termed as a pump when it used liquid, and is termed as a compressor or a fan or a blower, when it uses gas. The compressor is a machine where the main objective is to increase the static pressure of a gas. Therefore, the mechanical energy held by the fluid is mainly in the form of pressure energy. Fans or blowers, on the other hand, mainly cause a high flow of gas, and hence utilize the mechanical energy of the rotor to increase mostly the kinetic   energy of the fluid. In these machines, the change in static pressure is quite small.

For all practical purposes, liquid used by the turbines producing power is water, and therefore, they are termed as water turbines or hydraulic turbines. Turbines handling gases in practical fields are usually referred to as steam turbine, gas turbine, and air turbine depending upon whether they use steam, gas (the mixture of air and products of burnt  fuel in air) or air.

1.3 ROTODYNAMIC MACHINES

In this section, we shall discuss the basic principle of rotodynamic machines and the performance of different kinds of those machines. The important element of a rotodynamic machine, in general, is a rotor consisting of a number of vanes or blades. There always exists a relative motion between the rotor vanes and the fluid. The fluid has a component of velocity and hence of momentum in a direction tangential to the rotor. While flowing through the rotor, tangential velocity and hence the momentum changes.

The rate at which this tangential momentum changes corresponds to a tangential force on the rotor. In a turbine, the tangential momentum of the fluid is educed and therefore work is done by the fluid to the moving rotor. But in case of pumps and compressors there is an increase in the tangential momentum of the fluid and therefore work is absorbed by the fluid from the moving rotor.

 

Source: http://www.nptel.ac.in/courses/112104117/lec1.doc

Web site to visit: http://www.nptel.ac.in

Author of the text: indicated on the source document of the above text

If you are the author of the text above and you not agree to share your knowledge for teaching, research, scholarship (for fair use as indicated in the United States copyrigh low) please send us an e-mail and we will remove your text quickly. Fair use is a limitation and exception to the exclusive right granted by copyright law to the author of a creative work. In United States copyright law, fair use is a doctrine that permits limited use of copyrighted material without acquiring permission from the rights holders. Examples of fair use include commentary, search engines, criticism, news reporting, research, teaching, library archiving and scholarship. It provides for the legal, unlicensed citation or incorporation of copyrighted material in another author's work under a four-factor balancing test. (source: http://en.wikipedia.org/wiki/Fair_use)

The information of medicine and health contained in the site are of a general nature and purpose which is purely informative and for this reason may not replace in any case, the council of a doctor or a qualified entity legally to the profession.

 

Principles of Turbomachines

 

The texts are the property of their respective authors and we thank them for giving us the opportunity to share for free to students, teachers and users of the Web their texts will used only for illustrative educational and scientific purposes only.

All the information in our site are given for nonprofit educational purposes

 

Principles of Turbomachines

 

 

Topics and Home
Contacts
Term of use, cookies e privacy

 

Principles of Turbomachines