Home

Earth’s Atmosphere

Earth’s Atmosphere

 

 

Earth’s Atmosphere

Earth’s Atmosphere: A Blanket of GAS
We live at the bottom of an invisible ocean called the atmosphere, a layer of gases surrounding our planet. Nitrogen and oxygen account for 99 percent of the gases in dry air, with argon, carbon dioxide, helium, neon, and other gases making up minute portions. Water vapor and dust are also part of Earth’s atmosphere. Other planets and moons have very different atmospheres, and some have no atmospheres at all.
The atmosphere is so spread out that we barely notice it, yet its weight is equal to a layer of water more than 10 meters (34 feet) deep covering the entire planet. The bottom 30 kilometers (19 miles) of the atmosphere contains about 98 percent of its mass. The atmosphere—air—is much thinner at high altitudes. There is no atmosphere in space.
Scientists say many of the gases in our atmosphere were ejected into the air by early volcanoes. At that time, there would have been little or no free oxygen surrounding the Earth. Free oxygen consists of oxygen molecules not attached to another element, like carbon (to form carbon dioxide) or hydrogen (to form water).
Free oxygen may have been added to the atmosphere by primitive organisms, probably bacteria, during photosynthesis. Photosynthesis is the process a plant or other autotroph uses to make food and oxygen from carbon dioxide and water. Later, more complex forms of plant life added more oxygen to the atmosphere. The oxygen in today’s atmosphere probably took millions of years to accumulate.
The atmosphere acts as a gigantic filter, keeping out most ultraviolet radiation while letting in the sun’s warming rays. Ultraviolet radiation is harmful to living things, and is what causes sunburns. Solar heat, on the other hand, is necessary for all life on Earth.
Earth’s atmosphere has a layered structure. From the ground toward the sky, the layers are the troposphere, stratosphere, mesosphere, thermosphere, and exosphere. Another layer, called the ionosphere, extends from the mesosphere to the exosphere. Beyond the exosphere is outer space. The boundaries between atmospheric layers are not clearly defined, and change depending on latitude and season.
Troposphere
The troposphere is the lowest atmospheric layer. On average, the troposphere extends from the ground to about 10 kilometers (6 miles) high, ranging from about 6 kilometers (4 miles) at the poles to more than 16 kilometers (10 miles) at the Equator. The top of the troposphere is higher in summer than in winter.
Almost all weather develops in the troposphere because it contains almost all of the atmosphere’s water vapor. Clouds, from low-lying fog to thunderheads to high-altitude cirrus, form in the troposphere. Air masses, areas of high-pressure and low-pressure systems, are moved by winds in the troposphere. These weather systems lead to daily weather changes as well as seasonal weather patterns and climate systems, such as El Nino.
Air in the troposphere thins as altitude increases. There are fewer molecules of oxygen at the top of Mount Everest, Nepal, for example, than there are on a beach in Hawaii. This is why mountaineers often use canisters of oxygen when climbing tall peaks. Thin air is also why helicopters have difficulty maneuvering at high altitudes. In fact, a helicopter was not able to land on Mount Everest until 2005.
As air in the troposphere thins, temperature decreases. This is why mountaintops are usually much colder than the valleys beneath. Scientists used to think temperature continued to drop as altitude increased beyond the troposphere. But data collected with weather balloons and rockets have showed this is not the case. In the lower stratosphere, temperature stays almost constant. As altitude increases in the stratosphere, temperature actually increases.
Solar heat penetrates the troposphere easily. This layer also absorbs heat that is reflected back from the ground in a process called the greenhouse effect. The greenhouse effect is necessary for life on Earth. The atmosphere’s most abundant greenhouse gases are carbon dioxide, water vapor, and methane.
Fast-moving, high-altitude winds called jet streams swirl around the planet near the upper boundary of the troposphere. Jet streams are extremely important to the airline industry. Aircraft save time and money by flying in jet streams instead of the lower troposphere, where air is thicker.
Stratosphere
The troposphere tends to change suddenly and violently, but the stratosphere is calm. The stratosphere extends from the tropopause, the upper boundary of the troposphere, to about 50 kilometers (32 miles) above the Earth’s surface.
Strong horizontal winds blow in the stratosphere, but there is little turbulence. This is ideal for planes that can fly in this part of the atmosphere.
The stratosphere is very dry and clouds are rare. Those that do form are thin and wispy. They are called nacreous clouds. Sometimes they are called mother-of-pearl clouds because their colors look like those inside a mollusk shell.
The stratosphere is crucial to life on Earth because it contains small amounts of ozone, a form of oxygen that prevents harmful UV rays from reaching Earth. The region within the stratosphere where this thin shell of ozone is found is called the ozone layer. The stratosphere’s ozone layer is uneven, and thinner near the poles. The amount of ozone in the Earth’s atmosphere is declining steadily. Scientists have linked use of chemicals such as chlorofluorocarbons (CFCs) to ozone depletion.
Mesosphere
The mesosphere extends from the stratopause (the upper boundary of the stratosphere) to about 85 kilometers (53 miles) above the surface of the Earth. Here, temperatures again begin to fall.
The mesosphere has the coldest temperatures in the atmosphere, dipping as low as -120 degrees Celsius (-184 degrees Fahrenheit, or 153 kelvin). The mesosphere also has the atmosphere’s highest clouds. In clear weather, you can sometimes see them as silvery wisps immediately after sunset. They are called noctilucent clouds, or night-shining clouds. The mesosphere is so cold that noctilucent clouds are actually frozen water vapor—ice clouds.
Shooting stars—the fiery burnout of meteors, dust, and rocks from outer space—are visible in the mesosphere. Most shooting stars are the size of a grain of sand and burn up before entering the stratosphere or troposphere. However, some meteors are the size of pebbles or even boulders. Their outer layers burn as they race through the mesosphere, but they are massive enough to fall through the lower atmosphere and crash to Earth as meteorites.
The mesosphere is the least-understood part of Earth’s atmosphere. It is too high for aircraft or weather balloons to operate, but too low for spacecraft. Sounding rockets have provided meteorologists and astronomers their only significant data on this important part of the atmosphere. Sounding rockets are unmanned research instruments that collect data during sub-orbitalflights.
Perhaps because the mesosphere is so little understood, it is home to two meteorological mysteries: sprites and elves. Sprites are reddish, vertical electrical discharges that appear high above thunderheads, in the upper stratosphere and mesosphere. Elves are dim, halo-shaped discharges that appear even higher in the mesosphere.
Ionosphere
The ionosphere extends from the top half of the mesosphere all the way to the exosphere. This atmospheric layer conducts electricity.
The ionosphere is named for ions created by energetic particles from sunlight and outer space. Ions are atoms in which the number of electrons does not equal the number of protons, giving the atom a positive (fewer electrons than protons) or negative (more electrons than protons) charge. Ions are created as powerful x-rays and UV rays knock electrons off atoms.
The ionosphere—a layer of free electrons and ions—reflects radio waves. Guglielmo Marconi, the “Father of Wireless,” helped prove this in 1901 when he sent a radio signal from Cornwall, England, to St. John’s, Newfoundland, Canada. Marconi’s experiment demonstrated that radio signals did not travel in a straight line, but bounced off an atmospheric layer—the ionosphere.
The ionosphere is broken into distinct layers, called the D, E, F1, and F2 layers. Like all other parts of the atmosphere, these layers vary with season and latitude. Changes in the ionosphere actually happen on a daily basis. The low D layer, which absorbs high-frequency radio waves, and the E layer actually disappear at night, which means radio waves can reach higher into the ionosphere. That’s why AM radio stations can extend their range by hundreds of kilometers every night.
The ionosphere also reflects particles from solar wind, the stream of highly charged particles ejected by the sun. These electrical displays create auroras (light displays) called the Northern and Southern Lights.
Thermosphere
The thermosphere is the thickest layer in the atmosphere. Only the lightest gases—mostly oxygen, helium, and hydrogen—are found here.
The thermosphere extends from the mesopause (the upper boundary of the mesosphere) to 690 kilometers (429 miles) above the surface of the Earth. Here, thinly scattered molecules of gas absorb x-rays and ultraviolet radiation. This absorption process propels the molecules in the thermosphere to great speeds and high temperatures. Temperatures in the thermosphere can rise to 1,500 degrees Celsius (2,732 degrees Fahrenheit, or 1,773 kelvin).
Though the temperature is very high, there is not much heat. How is that possible? Heat is created when molecules get excited and transfer energy from one molecule to another. Heat happens in an area of high pressure (think of water boiling in a pot). Since there is very little pressure in the thermosphere, there is little heat transfer.
The Hubble Space Telescope and the International Space Station (ISS) orbitthe Earth in the thermosphere. Even though the thermosphere is the second-highest layer of Earth’s atmosphere, satellites that operate here are in “low-Earth orbit.”
Exosphere
The fluctuating area between the thermosphere and the exosphere is called the turbopause. The lowest level of the exosphere is called the exobase. At the upper boundary of the exosphere, the ionosphere merges with interplanetary space, or the space between planets.
The exosphere expands and contracts as it comes into contact with solar storms. In solar storms particles are flung through space from explosive events on the sun, such as solar flares and coronal mass ejections (CMEs).
Solar storms can squeeze the exosphere to just 1,000 kilometers (620 miles) above the Earth. When the sun is calm, the exosphere can extend 10,000 kilometers (6,214 miles).
Hydrogen, the lightest element in the universe, dominates the thin atmosphere of the exosphere. Only trace amounts of helium, carbon dioxide, oxygen, and other gases are present.
Many weather satellites orbit Earth in the exosphere. The lower part of the exosphere includes low-Earth orbit, while medium-Earth orbit is higher in the atmosphere.
COMPOSITION:
The Earth’s atmosphere is composed of the following molecules: nitrogen (78%), oxygen (21%), argon (1%), and then trace amounts of carbon dioxide, neon, helium, methane, krypton, hydrogen, nitrous oxide, xenon, ozone, iodine, carbon monoxide, and ammonia. The troposphere also has water vapor, but the amount varies by time, and over different surfaces. (Land vs. water).
Layers of Earth's Atmosphere
Layers of the atmosphere: troposphere, stratosphere, mesosphere and thermosphere.
Credit: Randy Russell, UCAR
Earth's atmosphere has a series of layers, each with its own specific traits. Moving upward from ground level, these layers are named the troposphere, stratosphere, mesosphere, thermosphere and exosphere. The exosphere gradually fades away into the realm of interplanetary space.
Troposphere
The troposphere is the lowest layer of our atmosphere. Starting at ground level, it extends upward to about 10 km (6.2 miles or about 33,000 feet) above sea level. We humans live in the troposphere, and nearly all weather occurs in this lowest layer. Most clouds appear here, mainly because 99% of the water vapor in the atmosphere is found in the troposphere. Air pressure drops, and temperatures get colder, as you climb higher in the troposphere.
Stratosphere
The next layer up is called the stratosphere. The stratosphere extends from the top of the troposphere to about 50 km (31 miles) above the ground. The infamous ozone layer is found within the stratosphere. Ozone molecules in this layer absorb high-energy ultraviolet (UV) light from the Sun, converting the UV energy into heat. Unlike the troposphere, the stratosphere actually gets warmer the higher you go! That trend of rising temperatures with altitude means that air in the stratosphere lacks the turbulence and updrafts of the troposphere beneath. Commercial passenger jets fly in the lower stratosphere, partly because this less-turbulent layer provides a smoother ride. The jet stream flows near the border between the troposphere and the stratosphere.
Mesosphere
Above the stratosphere is the mesosphere. It extends upward to a height of about 85 km (53 miles) above our planet. Most meteors burn up in the mesosphere. Unlike the stratosphere, temperatures once again grow colder as you rise up through the mesosphere. The coldest temperatures in Earth's atmosphere, about -90° C (-130° F), are found near the top of this layer. The air in the mesosphere is far too thin to breathe; air pressure at the bottom of the layer is well below 1% of the pressure at sea level, and continues dropping as you go higher.
Thermosphere
The layer of very rare air above the mesosphere is called the thermosphere. High-energy X-rays and UV radiation from the Sun are absorbed in the thermosphere, raising its temperature to hundreds or at times thousands of degrees. However, the air in this layer is so thin that it would feel freezing cold to us! In many ways, the thermosphere is more like outer space than a part of the atmosphere. Many satellites actually orbit Earth within the thermosphere! Variations in the amount of energy coming from the Sun exert a powerful influence on both the height of the top of this layer and the temperature within it. Because of this, the top of the thermosphere can be found anywhere between 500 and 1,000 km (311 to 621 miles) above the ground. Temperatures in the upper thermosphere can range from about 500° C (932° F) to 2,000° C (3,632° F) or higher. The aurora, the Northern Lights and Southern Lights, occur in the thermosphere.
Exosphere
Although some experts consider the thermosphere to be the uppermost layer of our atmosphere, others consider the exosphere to be the actual "final frontier" of Earth's gaseous envelope. As you might imagine, the "air" in the exosphere is very, very, very thin, making this layer even more space-like than the thermosphere. In fact, air in the exosphere is constantly - though very gradually - "leaking" out of Earth's atmosphere into outer space. There is no clear-cut upper boundary where the exosphere finally fades away into space. Different definitions place the top of the exosphere somewhere between 100,000 km (62,000 miles) and 190,000 km (120,000 miles) above the surface of Earth. The latter value is about halfway to the Moon!
Ionosphere
The ionosphere is not a distinct layer like the others mentioned above. Instead, the ionosphere is a series of regions in parts of the mesosphere and thermosphere where high-energy radiation from the Sun has knocked electrons loose from their parent atoms and molecules. The electrically charged atoms and molecules that are formed in this way are called ions, giving the ionosphere its name and endowing this region with some special properties.
© 2015 UCAR
Temperature in the atmosphere
INSOLATION = INcoming SOLar radiaTION
Solar radiation – the sun emits energy in all wavelengths of the electromagnetic spectrum. The most damaging rays are filtered by the outer layers of Earth’s atmosphere. Visible light and UV Radiation reach Earth’s surface, where it is absorbed or reflected. If it is absorbed at the surface, the Earth then re-radiates this energy in the form of Infra-red (IR) radiation = the heat wavelength. So it is Earth’s surface that DIRECTLY warms Earth’s atmosphere.
Through examination of measurements collected by radiosonde and aircraft (and later by rockets), scientists became aware that the atmosphere is not uniform. Many people had long recognized that temperature decreased with altitude – if you've ever hiked up a tall mountain, you might learn to bring a jacket to wear at the top even when it is warm at the base – but it wasn't until the early 1900s that radiosondes revealed a layer, about 18 km above the surface, where temperature abruptly changed and began to increase with altitude. The discovery of this reversal led to division of the atmosphere into layers based on their thermal properties.
Figure 3: This graph shows how temperature varies with altitude in Earth's atmosphere.
The lowermost 12 to 18 km of the atmosphere, called the troposphere, is where all weather occurs – clouds form and precipitation falls, wind blows, humidity varies from place to place, and the atmosphere interacts with the surface below. Within the troposphere, temperature decreases with altitude at a rate of about 6.5° C per kilometer. At 8,856 m high, Mt. Everest still reaches less than halfway through the troposphere. Assuming a sea level temperature of 26° C (80° F), that means the temperature on the summit of Everest would be around -31° C (-24° F)! In fact, temperature at Everest's summit averages -36° C, whereas temperatures in New Delhi (in nearby India), at an elevation of 233 m, average about 28° C (82.4° F).
At the uppermost boundary of the troposphere, air temperature reaches about -100° C and then begins to increase with altitude. This layer of increasing temperature is called the stratosphere. The cause of the temperature reversal is a layer of concentrated ozone. Ozone's ability to absorb incoming ultraviolet (UV) radiation from the sun had been recognized in 1881, but the existence of the ozone layer at an altitude of 20 to 50 km was not postulated until the 1920s. By absorbing UV rays, the ozone layer both warms the air around it and protects us on the surface from the harmful short-wavelength radiation that can cause skin cancer.
It is important to recognize the difference between the ozone layer in the stratosphere and ozone present in trace amounts in the troposphere. Stratospheric ozone is produced when energy from the sun breaks apart O2 gas molecules into O atoms; these O atoms then bond with other O2 molecules to form O3, ozone. This process was first described in 1930 by Sydney Chapman, a geophysicist who synthesized many of the known facts about the ozone layer. Tropospheric ozone, on the other hand, is a pollutant produced when emissions from fossil-fuel burning interact with sunlight.
Above the stratosphere, temperature begins to drop again in the next layer of the atmosphere called the mesosphere, as seen in the previous figure. This temperature decrease results from the rapidly decreasing density of the air at this altitude. Finally, at the outer reaches of Earth's atmosphere, the intense, unfiltered radiation from the sun causes molecules like O2 and N2 to break apart into ions. The release of energy from these reactions actually causes the temperature to rise again in the thermosphere, the outermost layer. The thermosphere extends to about 500 km above Earth's surface, still a few hundred kilometers below the altitude of most orbiting satellites.
Comprehension Checkpoint
All weather, including clouds, wind, and precipitation, occurs in the
• troposphere.
• stratosphere.
Pressure in the atmosphere
Figure 4: Pressure and density decrease rapidly with altitude.
Atmospheric pressure can be imagined as the weight of the overlying column of air. Unlike temperature, pressure decreases exponentially with altitude. Traces of the atmosphere can be detected as far as 500 km above Earth's surface, but 80 percent of the atmosphere's mass is contained within the 18 km closest to the surface. Atmospheric pressure is generally measured in millibars (mb); this unit of measurement is equivalent to 1 gram per centimeter squared (1 g/cm2). Other units are occasionally used, such as bars, atmospheres, or millimeters of mercury. The correspondence between these units is shown in the table below.
bars millibars atmospheres millimeters of mercury
1.013 bar = 1013 mb = 1 atm = 760 mm Hg
Table 3: Correspondence of atmospheric measurement units.
At sea level, pressure ranges from about 960 to 1,050 mb, with an average of 1,013 mb. At the top of Mt. Everest, pressure is as low as 300 mb. Because gas pressure is related to density, this low pressure means that there are approximately one-third as many gas molecules inhaled per breath on top of Mt. Everest as at sea level – which is why climbers experience ever more severe shortness of breath the higher they go, as less oxygen is inhaled with every breath.
Though other planets host atmospheres, the presence of free oxygen and water vapor makes our atmosphere unique as far as we know. These components both encouraged and protected life on Earth as it developed, not only by providing oxygen for respiration, but by shielding organisms from harmful UV rays and by incinerating small meteors before they hit the surface. Additionally, the composition and structure of this unique resource are important keys to understanding circulation in the atmosphere, biogeochemical cycling of nutrients, short-term local weather patterns, and long-term global climate changes.
Summary
Earth's atmosphere contains many components that can be measured in different ways. This module describes these different components and shows how temperature and pressure change with altitude. The scientific developments that led to an understanding of these concepts are discussed.
Key Concepts
• Earth's atmosphere is made up of a combination of gases. The major components of nitrogen, oxygen, and argon remain constant over time and space, while trace components like CO2 and water vapor vary considerably over both space and time.
• The atmosphere is divided into the thermosphere, mesosphere, stratosphere, and troposphere, and the boundaries between these layers are defined by changes in temperature gradients.
• Pressure decreases exponentially with altitude in the atmosphere.
• Our knowledge about the atmosphere has developed based on data from a variety of sources, including direct measurements from balloons and aircraft as well as remote measurements from satellites.
METHODS OF HEAT TRANSFER
Everything in nature tends to move from HIGH to LOW concentration. This includes heat. But heat is transferred from hotter to cooler areas by 3 methods. Each method depends on the type of material through which the heat moves.
Absorption & Radiation of Heat Energy
I. Heating Differences
A. Different Surfaces Heat (Absorb Energy) and Cool (Radiate Energy) at different Rates:
1. Surfaces that heat faster, also cool faster
2. Dark-colored Surfaces heat & cool faster than Light
Surfaces.
• Wear light colored clothing in the summer
3. Rough Surfaces heat & cool faster than Smooth
Surfaces.
• Poles (snow & ice) reflect sun’s energy (energy NOT absorbed)
• Choppy water absorbs more energy than smooth water
4. Land Heats & Cools more quickly than Water
• Sun only heats the top few centimeters of land
• Sun’s rays penetrate 100 meters in water
• Water is a fluid and spreads the heat energy
• Some of the energy that heats the water is lost through evaporation:
o Fastest moving molecules become water vapor and escape.
o Slower moving molecules are left behind – slower molecules = lower temperatures
History
Earth is believed to have formed about 5 billion years ago. In the first 500 million years a dense atmosphere emerged from the vapor and gases that were expelled during degassing of the planet's interior. These gases may have consisted of hydrogen (H2), water vapor, methane (CH4), and carbon oxides. Prior to 3.5 billion years ago the atmosphere probably consisted of carbon dioxide (CO2), carbon monoxide (CO), water (H2O), nitrogen (N2), and hydrogen.
The hydrosphere was formed 4 billion years ago from the condensation of water vapor, resulting in oceans of water in which sedimentation occurred.
The most important feature of the ancient environment was the absence of free oxygen. Evidence of such an anaerobic reducing atmosphere is hidden in early rock formations that contain many elements, such as iron and uranium, in their reduced states. Elements in this state are not found in the rocks of mid-Precambrian and younger ages, less than 3 billion years old.
One billion years ago, early aquatic organisms called blue-green algae began using energy from the Sun to split molecules of H2O and CO2 and recombine them into organic compounds and molecular oxygen (O2). This solar energy conversion process is known as photosynthesis. Some of the photosynthetically created oxygen combined with organic carbon to recreate CO2 molecules. The remaining oxygen accumulated in the atmosphere, touching off a massive ecological disaster with respect to early existing anaerobic organisms. As oxygen in the atmosphere increased, CO2 decreased.
High in the atmosphere, some oxygen (O2) molecules absorbed energy from the Sun's ultraviolet (UV) rays and split to form single oxygen atoms. These atoms combining with remaining oxygen (O2) to form ozone (O3) molecules, which are very effective at absorbing UV rays. The thin layer of ozone that surrounds Earth acts as a shield, protecting the planet from irradiation by UV light.
The amount of ozone required to shield Earth from biologically lethal UV radiation, wavelengths from 200 to 300 nanometers (nm), is believed to have been in existence 600 million years ago. At this time, the oxygen level was approximately 10% of its present atmospheric concentration. Prior to this period, life was restricted to the ocean. The presence of ozone enabled organisms to develop and live on the land. Ozone played a significant role in the evolution of life on Earth, and allows life as we presently know it to exist.
Present-Day Composition
A. Nitrogen - 78% - Dilutes oxygen and prevents rapid burning at the earth's surface. Living things need it to make proteins. Nitrogen cannot be used directly from the air. The Nitrogen Cycle is nature's way of supplying the needed nitrogen for living things.
B. Oxygen - 21% - Used by all living things. Essential for respiration. It is necessary for combustion or burning.
C. Argon - 0.9% - Used in light bulbs.
D. Carbon Dioxide - 0.03% - Plants use it to make oxygen. Acts as a blanket and prevents the escape of heat into outer space. Scientists are afraid that the buring of fossil fuels such as coal and oil are adding more carbon dioxide to the atmosphere.
E. Water Vapor - 0.0 to 4.0% - Essential for life processes. Also prevents heat loss from the earth.
F. Trace gases - gases found only in very small amounts. They include neon, helium, krypton, and xenon.
ASSIGNMENT SHEET: EARTH’S ATMOSPHERE
NAME:
1. Label the Layers of the atmosphere. Include:
a. MAIN LAYERS
b. TRANSITION LAYERS
c. CHARACTERISITCS OF EACH LAYER
d. Location of “GOOD” and “BAD” OZONE
2. Imagine that you are the sun, a water molecule, or a rock. You have been around since the earliest atmosphere. Choose one of the following to describe the changes and the experiences you have encountered.
A Comic Strip
1. Must describe the development of the present atmosphere (past to present)
2. Must have at least eight frames
3. Must have a cartoon picture for each frame
Each frame must have a caption or dialogue box
An Illustrated Story
1. Must describe the development of the present atmosphere and predict the future atmosphere
2. Must have at least two parts to the story: past and present
Must have at least one illustration per part
3. LABEL THE GREENHOUSE EFFECT DIAGRAM. Write the correct statement in each box
Activity: Atmosphere Riddles
Directions: Write the name of the layer or part of the atmosphere that answers the riddles. Use the link below to search for the answers.
1. I have the coldest temperature of the atmosphere.
Who am I?_______________________________
2. I am where most of the weather occurs.
Who am I?_______________________________
3. I contain most of the ozone layer.
Who am I?_______________________________
4. Artificial satellites orbit the earth here.
Who am I?_______________________________
5. I protect the earth from meteoroids.
Who am I?_______________________________
6. I protect the earth from ultraviolet rays given off by the sun.
Who am I?_______________________________
7. I am where radio waves are bounced back to the earth's surface.
Who am I?_______________________________
8. I extend to an average altitude of about 12 km.
Who am I?_______________________________
9. My temperature may reach as high as 2000 degrees celsius.
Who am I?_______________________________
10. Convection currents are produced in my layer.
Who am I?_______________________________
11. I am the layer that touches the surface of the earth.
Who am I?_______________________________
12. I am the layer that reaches the highest altitude.
Who am I?_______________________________
13. The jet stream is located here.
Who am I?_______________________________
14. I extend to an alititude from about 50 km to 80 km.
Who am I?_______________________________
15. I am the layer that interacts with living things.
Who am I?_______________________________
16. I extend upwards from an altitude of about 550 km to 1000 km.
Who am I?_______________________________
17. The air pressure is the greatest here.
Who am I?_______________________________
18. Electrically charged particles called ions are found here.
Who am I?_______________________________
19. My temperature drops about 6.5 degrees Celsius per km.
Who am I?_______________________________
20. I extend to an altitude of about 12 km to 50 km. Who am I?
______________________________________________

Source: https://www.lcps.org/cms/lib/VA01000195/Centricity/Domain/2917/May_9_Earthquakes_AtmosphereSTU.docx

Web site to visit: https://www.lcps.org

Author of the text: indicated on the source document of the above text

If you are the author of the text above and you not agree to share your knowledge for teaching, research, scholarship (for fair use as indicated in the United States copyrigh low) please send us an e-mail and we will remove your text quickly. Fair use is a limitation and exception to the exclusive right granted by copyright law to the author of a creative work. In United States copyright law, fair use is a doctrine that permits limited use of copyrighted material without acquiring permission from the rights holders. Examples of fair use include commentary, search engines, criticism, news reporting, research, teaching, library archiving and scholarship. It provides for the legal, unlicensed citation or incorporation of copyrighted material in another author's work under a four-factor balancing test. (source: http://en.wikipedia.org/wiki/Fair_use)

The information of medicine and health contained in the site are of a general nature and purpose which is purely informative and for this reason may not replace in any case, the council of a doctor or a qualified entity legally to the profession.

 

Earth’s Atmosphere

 

The texts are the property of their respective authors and we thank them for giving us the opportunity to share for free to students, teachers and users of the Web their texts will used only for illustrative educational and scientific purposes only.

All the information in our site are given for nonprofit educational purposes

 

Earth’s Atmosphere

 

 

Topics and Home
Contacts
Term of use, cookies e privacy

 

Earth’s Atmosphere